LiteRT in Google Play services C and C++ APIs

LiteRT in Google Play services runtime lets you run machine learning (ML) models without statically bundling LiteRT libraries into your app. This guide provide instructions on how to use the C or C++ APIs for Google Play services.

Before working with the LiteRT in Google Play services C API or C++ API, make sure you have the CMake build tool installed.

Update your build configuration

(1) Add the following dependencies to your app project code to access the Play services API for LiteRT:

implementation "com.google.android.gms:play-services-tflite-java:16.4.0"

Note that although the package name ends in -java, that package also contains the C and C++ APIs.

(2) Then, enable the Prefab feature to access the C API from your CMake script by updating the android block of your module's build.gradle file:

buildFeatures {
  prefab = true
}

(3) [C++ API only] If you are using the C++ API, copy tflite-java-extract-cpp-sdk.gradle into your project, in your app directory, and add the following to the start of your app's gradle script (e.g. app/build.gradle):

apply from: 'tflite-java-extract-cpp-sdk.gradle'

This contains Gradle code to automatically unpack the C++ SDK from the AAR file for play-services-tflite-java.

(4) [C++ API only] If you are using the C++ API, find the directory that contains your app's CMake config file (normally CMakeLists.txt); that directory is normally your app/src/main/cpp directory. Then copy Findtflite_cc_api.cmake into your project, in a new Modules subdirectory of that directory. This contains code that finds the C++ SDK unpacked by the Gradle script in the previous step.

(5) You finally need to add the package tensorflowlite_jni_gms_client, and for the C++ API also the package tflite_cc_api, both of which are imported from the AAR, as dependencies in your CMake script:

C

find_package(tensorflowlite_jni_gms_client REQUIRED CONFIG)

# Set up C/C++ compiler flags to enable use of TFLite in Play services
# (rather than regular TFLite bundled with the app).
add_compile_definitions(TFLITE_IN_GMSCORE)
add_compile_definitions(TFLITE_WITH_STABLE_ABI)

target_link_libraries(tflite-jni # your JNI lib target
        tensorflowlite_jni_gms_client::tensorflowlite_jni_gms_client
        android # other deps for your target
        log)
      

C++

# Set up TFLite in Play services C API (tensorflowlite_jni_gms_client) dependency.

find_package(tensorflowlite_jni_gms_client REQUIRED CONFIG)

# Set up TFLite in Play services C++ API (tflite_cc_api) dependency.

list(PREPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/Modules")

find_package(tflite_cc_api REQUIRED MODULE)
include_directories(${tflite_cc_api_INCLUDE_DIR})
add_subdirectory(${tflite_cc_api_DIR} tflite_cc_api_build)

# Set up C/C++ compiler flags to enable use of TFLite in Play services
# (rather than regular TFLite bundled with the app).
add_compile_definitions(TFLITE_IN_GMSCORE)
add_compile_definitions(TFLITE_WITH_STABLE_ABI)

target_link_libraries(tflite-jni # your JNI lib target
        tflite_cc_api::tflite_cc_api
        tensorflowlite_jni_gms_client::tensorflowlite_jni_gms_client
        android # other deps for your target
        log)
      

Initialize the LiteRT runtime

Before calling the LiteRT C or C++ API you must initialize the TfLiteNative runtime in your Java or Kotlin code.

Java

Task tfLiteInitializeTask = TfLiteNative.initialize(context);
      

Kotlin

val tfLiteInitializeTask: Task = TfLiteNative.initialize(context)
        

Using the Google Play services Task API, TfLiteNative.initialize asynchronously loads the TFLite runtime from Google Play services into your application's runtime process. Use addOnSuccessListener() to make sure the TfLite.initialize() task completes before executing code that accesses LiteRT APIs. Once the task has completed successfully, you can invoke all the available TFLite Native APIs.

Native code implementation

To use LiteRT in Google Play services with your C/C++ code, you can do one (or both) of the following:

  • declare new JNI functions to call C or C++ functions from your Java code
  • call the LiteRT Native API from your existing C or C++ code.

JNI functions

You can declare new JNI functions to make the LiteRT runtime declared in C/C++ code accessible to your Java/Kotlin code as follow:

Java

package com.google.samples.gms.tflite.c;

public class TfLiteJni {
  static {
    System.loadLibrary("tflite-jni");
  }
  public TfLiteJni() { /**/ };
  public native void loadModel(AssetManager assetManager, String assetName);
  public native float[] runInference(float[] input);  // For example.
}
      

Kotlin

package com.google.samples.gms.tflite.c

class TfLiteJni() {
  companion object {
    init {
      System.loadLibrary("tflite-jni")
    }
  }
  external fun loadModel(assetManager: AssetManager, assetName: String)
  external fun runInference(input: FloatArray): FloatArray  // For example.
}
        

Matching the following loadModel and runInference C or C++ functions:

#ifdef __cplusplus
extern "C" {
#endif

void Java_com_google_samples_gms_tflite_c_loadModel(
  JNIEnv *env, jobject tflite_jni, jobject asset_manager, jstring asset_name){
  //...
}

jfloatArray Java_com_google_samples_gms_tflite_c_TfLiteJni_runInference(
  JNIEnv* env, jobject tfliteJni, jfloatArray input) {
  //...
}

#ifdef __cplusplus
}  // extern "C".
#endif

You can then call your C/C++ functions from your Java/Kotlin code:

Java

tfLiteHandleTask.onSuccessTask(unused -> {
    TfLiteJni jni = new TfLiteJni();
    jni.loadModel(getAssets(), "add.bin");
    //...
});
    

Kotlin

tfLiteHandleTask.onSuccessTask {
    val jni = TfLiteJni()
    jni.loadModel(assets, "add.bin")
    // ...
}
      

LiteRT in native code

Include the appropriate API header file to include the LiteRT with Google Play services API:

C

#include "tensorflow/lite/c/c_api.h"
      

C++

#include "tensorflow/lite/interpreter.h"
#include "tensorflow/lite/model_builder.h"
      

You can then use the regular LiteRT C or C++ API:

C

TfLiteModel* model = TfLiteModelCreate(model_asset, model_asset_length);
// ...
TfLiteInterpreterOptions* options = TfLiteInterpreterOptionsCreate();
// ...
TfLiteInterpreter* interpreter = TfLiteInterpreterCreate(model, options);
      

C++

  // Load the model.
  auto model = tflite::FlatBufferModel::VerifyAndBuildFromBuffer(
      model_asset, model_asset_length);
  ...
  // Initialize the interpreter.
  BuiltinOpResolver op_resolver;
  InterpreterBuilder interpreter_builder(*model, op_resolver);
  interpreter_builder(&interpreter);
  std::unique_ptr<Interpreter>` interpreter;
  interpreter_builder(&interpreter);
      

Supported APIs

C

The LiteRT with Google Play services C API headers provide the same API as the regular LiteRT C API, excluding features that are deprecated or experimental. For now the functions and types from the following headers are available.

TensorFlow Lite APIs for loading and executing models:

tensorflow/lite/c/c_api.h
tensorflow/lite/c/c_api_types.h
      

TensorFlow Lite Extension APIs for defining custom ops and delegates (e.g. for hardware acceleration):

tensorflow/lite/c/c_api_opaque.h
tensorflow/lite/c/common.h
tensorflow/lite/c/builtin_op_data.h
tensorflow/lite/builtin_ops.h
      

Delegate plug-in APIs for using existing delegates:

tensorflow/lite/acceleration/configuration/c/gpu_plugin.h
tensorflow/lite/acceleration/configuration/c/xnnpack_plugin.h
      

Please note that functions from the c_api_experimental.h header are not supported.

You can use functions specific to LiteRT with Google Play services by including the following header:

tensorflow/lite/abi/tflite.h
.

C++

The LiteRT with Google Play services C++ API headers provide the same API as the regular LiteRT C++ API, excluding features that are deprecated or experimental, and with a few minor exceptions noted later in this section. The functionality from the following headers is available:

tensorflow/lite/model_builder.h
tensorflow/lite/interpreter_builder.h
tensorflow/lite/interpreter.h
tensorflow/lite/signature_runner.h
tensorflow/lite/acceleration/configuration/delegate_registry.h
tensorflow/lite/kernels/builtin_op_kernels.h
tensorflow/lite/kernels/register.h
tensorflow/lite/tools/verifier.h
      

For tensorflow/lite/interpreter.h, the supported API with Play services excludes a few members of tflite::Interpreter for which LiteRT does not offer a stable ABI:

Interpreter::variables()
Interpreter::nodes_size()
Interpreter::node_and_registration(int node_index)
Interpreter::kTensorsReservedCapacity
Interpreter::kTensorsCapacityHeadroom
Interpreter::OpProfilingString(const TfLiteRegistration&, const TfLiteNode*)
Interpreter::SetExternalContext(TfLiteExternalContextType type, TfLiteExternalContext* ctx)